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We present a detailed numerical study of the interaction of a weak shock wave 
with an isolated cylindrical gas inhomogeneity. Such interactions have been studied 
experimentally in an attempt to elucidate the mechanisms whereby shock waves 
propagating through random media enhance mixing. Our study concentrates on the 
early phases of the interaction process which are dominated by repeated refractions 
and reflections of acoustic fronts at the bubble interface. Specifically, we have 
reproduced two of the experiments performed by Haas & Sturtevant: a Mach 1.22 
planar shock wave, moving through air, impinges on a cylindrical bubble which 
contains either helium or Refrigerant 22. These flows are modelled using the two- 
dimensional compressible Euler equations for a two-component fluid (air-helium or 
air--Refrigerant 22). Utilizing a novel shock-capturing scheme in conjunction with a 
sophisticated mesh refinement algorithm, we have been able to reproduce numerically 
the intricate mechanisms that were observed experimentally, e.g. transition from 
regular to irregular refraction, cusp formation and shock wave focusing, multi-shock 
and Mach shock structures, and jet formation. The level of agreement lends credibility 
to a number of observations that can be made using information from the simulations 
for which there is no experimental counterpart. Thus we can now present an updated 
description for the dynamics of a shock~-bubble interaction which goes beyond that 
provided by the original experiments. 

1. Introduction 
In an extremely lucid paper, Haas & Sturtevant (1987) presented an experimental 

study of the interaction of weak shock waves with isolated inhomogeneities that 
took the form of either spherical or cylindrical bubbles. They argued that idealized 
experiments were necessary to shed light on the complex phenomenological behaviour 
whereby shock waves propagating through random media can alter the structure of 
fluid inhomogeneities. To this end, their experiments were a resounding success. A 
number of shadowgraphs were produced which provide important insight into mecha- 
nisms such as transition from regular to irregular refraction, folding processes, shock 
wave focusing, distortion of the bubble interface and vortex formation. However, 
given the nature of the experiments, certain subtleties of the interaction process were 
inevitably left unexplained. Recall that such experiments are extremely difficult to 
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control since they are conducted under imperfect conditions. For example, diffusion 
occurs across the membrane that forms the bubble interface and so the precise prop- 
erties of the gas inhomogeneity are not known (Abd-El-Fattah & Henderson 1978a,b). 
Moreover, when the shock impinges on the bubble the membrane does not always 
rupture cleanly and can interfere with the flow (Rupert 1992), as does the support 
structure needed to hold the bubble in place. There are also difficulties with the 
repeatability of the experiment due to variations in the incident shock strength (Haas 
& Sturtevant 1987), and problems with the interpretation of the flow visualization 
images due to unwanted three-dimensional effects (Wang & Widhopf 1990). Other 
problems arise in that certain quantities of interest cannot be measured directly, either 
because of their intrinsic nature (e.g. vorticity) or because of practical limitations in 
the experimental set-up. 

Given this background, the present work is an attempt to clarify the physical 
mechanisms observed by Haas & Sturtevant (1987) using high-resolution numerical 
simulations to provide key information missing from previous analyses. For example, 
although Haas & Sturtevant were able to use the theory of geometrical acoustics 
to gain a ood understanding of their experimental observations, this theory ignores 
wave nonlinearities and so fails to account for all flow features. Similarly, while von 
Neumann theory (1963) is exact, within its assumptions, it cannot cope with regions 
of non-uniform flow and therefore is not strictly applicable to shock interactions 
at curved interfaces (Ben-Dor & Takayama 1985). On the other hand, Whitham’s 
theory (1957, 1958) and its extensions (Catherasoo & Sturtevant 1983; Schwendeman 
1988) can cope with curved interfaces, but the theory does not take proper account 
of reflected waves and cannot provide any details for the flow structure behind the 
incident and refracted shock fronts. Hence the need for numerical simulations - 
simulations provide a controlled means of isolating genuine flow phenomenology 
from experimental artifact and can provide global details of the flow dynamics to 
supplement the idealized, local descriptions provided by theory. For the case of 
shock refraction at a planar interface, Henderson, Colella & Puckett (1991) have 
demonstrated that careful simulations can be used to improve the classification of 
reflection-refraction phenomena which arose from experiment and analysis (Abd-El- 
Fattah & Henderson 1978a,h). Here we aim to shed more light on the refraction 
process at a curved interface. 

Several numerical studies have already been inspired by the experiments of Haas & 
Sturtevant (1987): Picone & Boris (1988) and Yang, Kubota & Zukoski (1993, 1994) 
performed computations aimed at determining the long-time evolution of the bubble 
inhomogeneities; Lohner, Picone & Boris (1988) investigated the early-time dynamics 
of the interaction process; Samtaney & Zabusky (1994) performed simulations to 
validate a prediction model for the circulation produced by the interactions. Apart 
from this last reference, these earlier studies employed a single-gas flow model and so 
did not represent closely the binary systems used in the experiment. More specifically, 
since some desired density jump must be imposed across the bubble interface, with a 
single-gas model the bubble cannot be in thermal equilibrium with its surroundings, 
as was the case with the experiments. Consequently the error in temperature will be 
arbitrarily large, dependent on the required density ratio (for a helium bubble in air 
the temperature would be 2.08 times too high), Admittedly, for the cases studied here 
the errors so introduced are not catastrophic and to some extent may be tolerated. 
However, one motivation for studying a shock-bubble interaction is to investigate 
mechanisms whereby air and fuel can be mixed in the short transit time open to a 
supersonic combustion system (Marble, Hendricks & Zukoski 1987), an application 
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where gross errors in the temperature field could not be tolerated. In addition to 
the shortcoming of the flow model, all the referenced studies are under-resolved and 
therefore prone to misinterpretation. 

Our computational approach is shaped by a desire to avoid these shortcomings. 
First, account is taken of the different gas components (air and helium or air and 
Refrigerant 22 depending upon the experiment being simulated). Although this 
represents but a small modelling generalization, numerical difficulties are introduced 
that have led us to adopt a novel shock-capturing scheme (Karni 1994). Second, 
we utilize a sophisticated adaptive mesh refinement algorithm (Quirk 1991) that can 
reduce by several hundred-fold the cost of performing detailed simulations and so 
allows for simulations that would otherwise be prohibitively expensive. 

The organization for the rest of this paper is as follows. In the next section we 
present our flow model and describe the motivation behind our choice of integration 
scheme. In  $3 we describe the major components of our numerical method, then in 94 
we detail the computational set-up for the experiments that we have simulated. This is 
followed by four sections of results and discussion. First, in $5 we present a qualitative 
comparison with experiment, concentrating on flow visualization. Then we present 
two quantitative comparisons with experiment: one section deals with the velocities 
of certain key flow features, the other deals with the measurement of pressure traces 
at various locations along the axis of flow symmetry. These comparisons are followed 
by a discussion on the production of vorticity resulting from the passage of the shock 
through the bubble inhomogeneity. Although this discussion goes beyond the main 
purpose of this paper i t  is pertinent to several recent studies aimed at determining 
the long-time evolution of the bubble. Finally, in 49 we summarize the main results 
of our study. 

2. Flow model 
As Picone & Boris (1988) observed, diffusive effects do not play a major role in the 

early dynamics of the present shock-bubble interactions, because the timescales are 
too short. They estimated the kinematic viscosity to be 0.2 cm2 s-' which translates 
to an effective viscous lengthscale of 0.089 mm at the end of a 400 ps interaction, 
i.e. 1/1000 of the height of the duct used in the experiments. Therefore a direct 
numerical simulation would have to employ a mesh spacing at least an order of 
magnitude smaller than this lengthscale, to stand any chance of resolving the viscous 
structures accurately, and so would prove inordinately expensive compared to an 
inviscid simulation. In view of this, we took the two-component compressible Euler 
equations as the basis for our investigation. 

In a Cartesian space (x, y ) ,  these equations may be cast in conservation form using 
the variables W = (p ,  pu. pv, E ,  p Y  )' : 

W ,  + F (  W). ,  + C ( W ) , .  = 0; 
PI' 

F ( W )  = [ p : p ) ;  G ( W ) =  [ 4 E  p:.). + p )  J (2.1) 
u(E + P )  

p11 Y 

The equations are written for a mixture of two fluids; p is the density of a binary 
mixture whose mass fractions are Y for component one and 1 - Y for component 
two. Thus it is assumed that the fluid components are in pressure equilibrium and 



132 J .  J .  Quirk and S. Karni 
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1. Pressure fluctuation at a material interface due to numerical smearing. 

move with a single velocity whose components are u and 21 in the x- and y-directions, 
respectively. This assumption of no velocity slip is reasonable only if the density 
variation between components is moderate as is generally the case with two gases. 
Both fluid components are taken to be perfect gases, with ratios of specific heat 
y1 = Cpl/Cvl and ~2 = Cpz/Cv2. Therefore, the pressure, p ,  is given by 

p = ( y ( Y )  - 1)(E - i p u 2  - i p v 2 )  (2.2) 
where E is the total energy of the mixture per unit volume, and y (  Y )  is the effective 
ratio of specific heats dependent on the species concentration, Y ,  and is found from 
standard thermodynamic reasoning to be 

It is well known that solutions to (2.1) may develop discontinuous shock fronts, 
across which the governing equations are no longer valid in their differential form, 
and that using Gauss’s divergence theorem (2.1) may be recast into an integral form 
which remains valid at a shock: 

Equation (2.4) is the basis for so-called conservative shock-capturing schemes : dis- 
cretizations in which numerical approximations to the flux vectors F and G are used 
to evolve the field solution, W .  Irrespective of the flux formulation, however, a 
shock-capturing scheme results in a smeared ‘viscous’ shock profile rather than the 
perfect discontinuity admitted by the governing equations (unless the discontinuity 
coincides with a cell interface). Although artificially smeared, a shock captured by 
a conservative discretization can be shown to have both the correct strength and 
speed; conversely, a non-conservative discretization may give physically inconsistent 
solutions (Lax 1954,1972; Hou & Le Floch 1994). 

Given this fundamental property, a conservative formulation is almost universally 
accepted as the starting point for devising a shock-capturing scheme, and to date many 
successful schemes have been so developed for single-component flows. However, 
a major concern in extending conservative schemes to multi-component flows is 
to ensure that fluid components maintain pressure equilibrium across numerically 
diffused material interfaces (Abgrall 1988; Larrouturou 1991; Ton et al. 1991, Karni 
19940, and Bell et al. 1994). This numerical difficulty is illustrated in figure 1. Even 
when each of the conserved variables, W, remains monotone as a material interface 
smears, there is no guarantee that a derived quantity will also remain monotone and 
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FIGURE 2. Pressure profiles for a one-dimensional 'shock-bubble' interaction obtained using: (a )  a 

conservative scheme (Roe 1982); ( h )  the present non-conservative scheme (Karni 1994). 

so the pressure that corresponds to the artificial intermediate state can differ from 
the equilibrium pressure. 

Once generated, such pressure fluctuations can propagate and contaminate the 
solution field. For example, figure 2(a) shows a snapshot from a one-dimensional 
conservative computation of a shock-bubble interaction where the start data are 
identical to the air-helium case given in $4. Here the initial position of the bubble 
is marked by the vertical lines and the computed pressure field is shown some time 
after the shock has passed through the bubble and several reflections and refractions 
have taken place. Spurious pressure oscillations are clearly visible. For other sets of 
reasonable data, such oscillations can get even larger. Now since material interfaces 
can be physically unstable, even slight numerical perturbations can trigger completely 
incorrect interfacial behaviour (Karni 1995) and are therefore to be avoided. Moreover 
in a reactive system such pressure perturbations could significantly alter the local 
release of energy and become amplified. 

Numerical problems such as the above can be avoided, if fronts are fitted or 
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tracked as perfect discontinuities, rather than captured as smeared discontinuities. 
For example, the multi-fluid tracking algorithm of Colella, Glaz & Ferguson (1989) 
(also described in Puckett & Saltzman 1992) has been successfully applied to the study 
of shock refraction at a planar interface (Henderson et al. 1991). This algorithm 
is based on a volume-of-fluid approach and reconstructs material interfaces at the 
sub-grid level, using the partial volumes of the separate fluid components, so as to 
obtain appropriate local thermodynamic properties with which to evolve the flow, 
maintaining pressure equilibrium between components. Closer to the present study, 
Grove & Menikoff (1990) have successfully employed a front tracking algorithm 
(Glimm & McBryan 1985) to the interaction of a shock with an air bubble in water. 
Although effective, both fitting and tracking methods can be awkward to implement 
in multi-dimensions owing to the logistics of having to deal explicitly with arbitrary 
shaped interfaces and the topological possibilities this entails. 

We prefer to remain within the framework afforded by a shock-capturing philosophy 
and have adopted an unconventional approach which ensures pressure equilibrium 
among fluid components in a more straightforward manner. In our approach the 
Euler system (2.1) is recast using primitive variables, U = (p, u, v ,  p ,  Y ) I ,  to give 

U ,  + AP( U ) U ,  + BP( U ) U ,  = 0, 
u p 0  0 0 v o p  0 0  
0 u 0 p-1 0 o v o  0 0 

0 0 0  0 u 0 0 0  0 u 

To see the advantages of this formulation, consider a planar material interface 
aligned in the x-direction with data such that d /dy  = 0. Across the interface, both the 
pressure, p, and the normal velocity component, u, are constant. It follows that locally 
the system (2.5) reduces to three completely decoupled linear advection equations in 
p, v and Y and that both p and u remain constant. Thus, near the material interface, 
any consistent discretization of (2.5) will produce oscillation-free solutions without 
introducing conservation errors. 

Conservation errors, however, will occur near shocks and unless some measure 
is taken to control them, a primitive-variable formulation will prove inadequate. 
Building on an idea first proposed by Zwas & Roseman (1973), Karni (1992) has 
developed a set of high-order correction terms which can be used to remove leading- 
order conservation errors to produce a nearly conservative primitive-variable scheme. 
This scheme rests on two observations: 

(i) numerically captured shocks have ‘viscous’ profiles which are determined by 
the truncation error of the discretization scheme; 

(ii) a conservative discretization produces a consistent ‘viscous’ shock profile in 
the sense that a captured shock has both the correct strength and speed. 
In essence, the present primitive-variable scheme employs correction terms to mimic 
the ‘viscous’ shock profile of a conservative scheme. In the next section, we outline the 
derivation of this scheme. But first, we demonstrate that for the above one-dimensional 
problem it produces oscillation free solutions: cf. figures 2(a) and 2(b). 

3. Numerical method 
We now describe the major components of our numerical method. These are: (i) 

the primitive variable discretization - this provides a sound basis for the integration 
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of multicomponent flows; (ii) the parallel, adaptive mesh refinement implementation - 
this is essential to resolve intricate flow features, while maintaining low computational 
costs; (i i i)  graphical flow visualization - this facilitates the process of elucidating the 
phenomena under investigation. 

We describe these components in some depth, since many of the details are not 
available elsewhere, and the components are sufficiently general purpose that they 
could be used profitably to study phenomena quite unrelated to that studied here. 

3.1. A non-c'onseruative shock-capturing scheme 
Following Strang (19681, we employ dimensional splitting to integrate the system 
(2.5) with the refinement that correction terms are applied to the right-hand side of 
each split equation so as to control conservation errors. Thus, we alternate between 
integrating 

U ,  $- A/'(U)U, = T D ,  and U r  + B P ( U ) U , .  = -D,.. 

The precise form of the correction terms, D, and D,, depends upon the discretization 
for the left-hand side of each split equation. Here we derive the correction terms, D,, 
assuming that the left-hand side of the x-sweep operator has been discretized using 
Roe's first-order upwind scheme (Roe 1982). In essence, this is done by comparing 
the x-sweep discretization for the primitive system (2.5) with the analogous x-sweep 
discretization for the conservative system (2.1). 

If Roe's scheme (Roe 1982) is used to solve (2.1), the scheme is a first-order 
approximation to (2.1) but i t  is a second-order approximation to the equivalent 

At At 
i 2 (3 .1)  

where /I = A t / A s  is the ratio of the time step and mesh size used for the integration 
and A' is the Jacobian matrix ?F( W ) / ; l W .  The right-hand side of (3.2) constitutes 
the leading order terms in the truncation error of the scheme. To leading order, these 
dissipative terms determine the viscous path across the numerical shock transition. 
In this case, the numerical viscous path is physically consistent since it is produced 
by a conservative scheme and so i t  produces correct shock speeds and jumps. 

Similarly, if Roe's upwind scheme is applied to solve equation (2 .5) ,  the scheme is 
a second-order approximation to the equivalent equation 

In general, the two viscous forms (3.2) and (3.3) are different. The former, arising 
from a conservative discretization, yields shocks that satisfy the Rankine-Hugoniot 
conditions the latter does not. To enforce consistent shock profiles on the primitive 
solution, the difference between the two viscous expressions (appropriately trans- 
formed) has to be added to the right-hand side of the x-sweep operator for the 
primitive system to give (3.1) where 

and T is the conservative to primitive transformation matrix ? U / ?  W .  
If (3.1) is solved by Roe's upwind scheme, with its right-hand side (3.4) appropriately 

discretized, the solution procedure is conservative to the order of the numerical 
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approximation. The correction terms may be written entirely in terms of the primitive 
variables 

Straightforward algebra shows that for the extended Euler system (2.5), the correc- 
tion terms are given by 

D,  = 

where 

CI  = Ju  - a1 + 21ul + 1u + al, 

c2 = 1u - a1 - 2juI + Iu + a / ,  

c3 = Iu - a1 + Iu + a( ,  

c4 = Iu - a(  - Iu + a1 
and a is the sound speed. 
The following observations can be made. 

(i) If (2.5) is used to replace time derivatives by space derivatives, all terms 
within D, are scaled by either one or both of us and px, hence D, vanishes near 
contact surfaces. Consequently, the correction terms, although derived for first-order 
upwinding, may also be used for second-order upwinding without degrading the 
latter’s superior resolution of contact surfaces (Karni 1992, 1994). Besides, such 
schemes often reduce to first-order accuracy near shocks anyway, which is precisely 
where the correction terms come into play. 

(ii) The correction terms are derived using asymptotic arguments based on the 
scheme truncation error. Conservation errors, while significantly reduced, are inherent 
to the method (Hou & Le Floch 1994; Karni 1992) and are not completely eliminated. 

(iii) The correction terms depend on the ratio 3, = At/Ax, and so some variation 
in their effect is to be expected with changes in Courant number (wave speed*A). It 
is our experience that the correction terms work best at Courant numbers close to 
one, which is the upper bound on the size of time step for the integration process to 
be stable. 
The correction terms for the y-sweep operator (3.1) may be similarly derived and are 
given by 

D, = (3.7) 
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where the coefficients c1-c4 are the same as those in (3.6) but with u replaced 
by u .  

Given the derivation of the correction terms, our basic method of flow integration 
is as follows. The left-hand side of each split equation (3.1) is discretized using a 
second-order Roe scheme cast in 'fluctuation-and-signal' form (Roe 1982). For the 
correction terms, temporal derivatives are replaced by spatial derivatives which are 
then centrally differenced, and pointwise values take the cell-centred values used by 
Roe's scheme. The correction terms contribute to cell updates via a forward Euler time 
integration. Thus the x-sweep operator of our nearly conservative primitive-variable 
scheme takes the form 

U:+' = -I"p"'( U:') + At -D , (  Uy)  

where Yf" is the standard Roe evolution operator. The y-sweep operator follows by 
analogy, and the two operators are alternated so as to arrive at a two-dimensional 
scheme (Strang 1968). 

K I 

3.2. The A M R  algorithm - U I I  overview 
The Adaptive Mesh Refinement (AMR) algorithm is a general purpose scheme for 
integrating systems of hyperbolic partial differential equations. It attempts to reduce 
the costs of integration by matching the local resolution of the computational grid 
to the local requirements of the solution being sought. For example, in simulations 
of gasdynamic flows, a fine mesh is generally used only in the vicinity of shock 
waves and other flow discontinuities, elsewhere a relatively coarse mesh is employed. 
Although the computational savings which accrue from local mesh refinement are 
totally problem dependent, they are often significant; savings of more than five 
hundred-fold have been obtained for simulations of detonation phenomena (Quirk 
1996). The foundations of the AMR algorithm lie in the works of Berger & Oliger 
(1984) and Berger & Colella (1989), but the derivative outlined here is due to Quirk 
( 199 1, 1996). 

The AMR algorithm employs a hierarchical grid system. In the following, the 
term 'mesh' refers to a single topologically rectangular patch of cells and the term 
'grid' refers to a collection of such patches. At the bottom of the hierarchy a set of 
coarse mesh patches delineates the computational domain. These patches form the 
grid Go and they are restricted such that there is continuity of grid lines between 
neighbouring patches. This domain may be refined locally by embedding finer mesh 
patches into the coarse grid Go. These embedded patches form the next grid in the 
hierarchy, G1. Each embedded patch is effectively formed by subdividing the coarse 
cells of the patches that it overlaps. The choice for the refinement ratio is arbitrary, 
but it must be the same for all the embedded patches. Thus, by construction, the grid 
G I  also has continuity of grid lines. This process of adding grid tiers to effect local 
refinement may be repeated as often as desired, see figure 3. 

From stability considerations, many numerical schemes have a restriction on the 
size of time step that may be used to integrate a system of equations. The finer the 
mesh, the smaller the allowable time step. Consequently, the AMR algorithm refines 
in time as well as space. More but smaller time steps are taken on fine grids than on 
coarse grids in a fashion which ensures that the rate at which waves move relative 
to the mesh (the Courant number) is comparable for all grid levels. This avoids the 
undesirable situation where coarse grids are integrated at very small Courant numbers 
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FIGURE 3. The AMR algorithm employs a hierarchical grid system. 
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FIGURE 4. Grid operations are recursively interleaved (to be read from top to bottom). 

given the time step set by the finest grid’s stability constraints: some schemes (e.g. 
Lax--Wendroff) give poor accuracy for small Courant numbers. 

The field solution on each grid is retained even in regions of grid overlap and so all 
grid levels in the hierarchy coexist. The order of integration is always from coarse to 
fine since it is necessary to interpolate a coarse grid solution in both time and space 
to provide boundary conditions for its overlying fine grid. The various integrations at 
the different grid levels are recursively interleaved to minimize the span over which 
any temporal interpolation need take place. Periodically, for consistency purposes, it 
is necessary to project a fine grid solution on to its underlying coarse grid. Figure 4 
shows the sequence of integration steps and back projections for a three-level grid 
(Go, GI,  G,} with refinement ratios of 2 and 4. 

The integration of an individual grid is extremely simple in concept. Each mesh is 
surrounded by borders of dummy cells. Prior to integrating a grid, the dummy cells 
for every mesh patch in the grid are primed with data which are consistent with the 
various boundary conditions that have to be met. Each mesh patch is then integrated 
independently by an application-dependent black-box integrator that never actually 
sees a mesh boundary. Thus, in principle, any cell-centred scheme developed for a 
single topologically rectangular mesh can form the basis for the integration process. 

In general it is necessary to adapt the computational grid to the changes in the 
evolving flow solution and so the grid structure is dynamic in nature. Monitor 
functions based on the local solution are used to determine automatically where 
refinement needs to take place to resolve small-scale phenomena (Quirk 1991). For 
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FIGURL 5. The A M R  algorithm employs a dynamic grid system 

a simple example, figure 5 shows several snapshots taken from the simulation of a 
shock wave diffracting around a corner. Each snapshot shows the outlines of the 
mesh patches which go to make the finest grid. This grid clearly conforms to the main 
features of the flow, namely the diffracted shock front and the vortex located at the 
apex of the corner (Van Dyke 1982). Although the changes in grid structure shown 
here are dramatic, many adaptions have taken place between each frame (the mesh 
patches appear small, but each patch actually contains several hundred cells). A large 
number of small grid movements occurs because the adaption process dovetails with 
the integration process, see figure 4. Observe that the adaption always proceeds from 
fine to coarse so as to ensure that there is never a drop of more than one grid level 
at the edge of a fine grid to the underlying coarse grid. A grid adaption essentially 
produces a new set of mesh patches which must be primed with data from the old set 
of patches before the integration process can proceed. Where a new patch partially 
overlaps an old patch of the same grid level, for the region of overlap data may be 
simply shovelled from the old patch to the new patch. In regions of no such overlap, 
the required field solution is found by interpolation from the underlying coarse grid 
solution. 

In a typical application the finest grid will contain several hundred mesh patches. 
Thus, the mesh patch is a sufficiently fine unit of data for efficient parallelism. The 
parallel AMR algorithm (Quirk 1996) is implemented using a Single Program Multiple 
Data (SPMD) model. Each processing node executes the basic serial algorithm (Quirk 
1991) in isolation from all other nodes, except that at a few key points messages 
are sent between the nodes to supply information that an individual node deems 
to be missing, that is off-processor. For example, during the integration of a grid, 
the only point at which a processor needs to know about other processors is during 
the priming of the dummy cells. Whereas in a serial computation all data fetches 
are from memory, for a parallel computation some are from memory and some 
necessitate receiving a message from another processor. Each time the grid adapts, 
the algorithm generates a schedule of tasks that have to be performed so as to prime 
correctly the dummy cells of a given grid. If running in parallel, this schedule is 
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parsed to produce a schedule of those tasks that necessitate off-processor fetches, at 
which point, individual processors can exchange subsets of their fetch schedules, as 
appropriate, so that every node can construct a schedule of messages that it must 
send out at some later date. Thus, the priming process is carried out in two phases. 
First, all the local data fetches are performed as for the serial case. Second, each 
node sends out the data that has been requested of it. The node then waits for those 
data items it has requested. For each incoming message it can readily determine from 
its own schedules what to do with the off-processor data, and so the order in which 
messages arrive is unimportant. The adaption process and the back projection of the 
field solution between grid levels also necessitate sizeable amounts of communication ; 
these are handled in a similar fashion to the priming of the dummy cells. 

The problem of load balancing the AMR algorithm rests on determining the 
best distribution of the new patches amongst the processing nodes before the new 
field solution is interpolated from the old field solution. Currently, this is done 
using heuristic procedures (Quirk 1996) which bear strong similarities to classical 
‘bin packing’ algorithms (Graham 1969) with the added complication that they must 
account for the communication costs of data transfer between nodes. 

3.3. Flow visualization images 
The plots shown in figures 7 and 9 depict the magnitude of the gradient of the density 
field, 

and so may be viewed as idealized schlieren images. 
computed using straightforward central-differencing, 
shading function, 4, was used to accentuate weak flow 

The density derivatives were 
and the following nonlinear 
features: 

4 = exp (-,c-) IVPI . 
I VP Intux 

Here k is a constant that took the value 600 for the light fluid and 120 for the heavy 
fluid. Using a 24-bit colour graphics system, the grey shades outside the bubble were 
produced using the (R,  G,  B) triplet (2304,2304,2304) and those within the bubble 
using (2004,2304,255). Thus the darker the image, the larger the density gradient. 

Some realistically lit surface plots are also presented, e.g. figures 8 and 10. These 
are useful for determining the strengths of certain flow features, but lack of space 
prevents us from describing how they were produced. 

4. Computational set-up 
For our investigation of the dynamics of a shock-bubble interaction we have 

reproduced numerically two of the experiments performed by Haas & Sturtevant 
(1987). Namely, the interactions of a M s  = 1.22 planar shock wave, moving through 
air, with a cylindrical bubble of either helium or Refrigerant 22 (CHCIF2). Whereas 
the helium bubble is lighter than the surrounding air and so acts as a divergent 
acoustic lens, the R22 bubble is heavier and therefore acts as a convergent acoustic 
lens. As will be seen in $5, these two cases lead to very different flow behaviour. 

In the experiments the bubbles were produced by inflating a cylindrical former 
whose walls were made from a very thin membrane of nitrocellulose. Thus good 
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t- 890 mm w 
FIGURF 6. A schematic of the computational domain (not to scale). 

control was exercised over the shape of the bubble and the resultant flows were 
almost two-dimensional, and so our computations which are two-dimensional can 
be expected to mimic the experiments fairly closely. Haas & Sturtevant produced 
three sets of results: (i) flow visualization in the form of spark shadowgraphs; 
(ii) velocities for certain key flow features; (iii) pressure traces measured at points 
downstream of the bubble along the axis of flow symmetry. We have produced 
similar sets of results from our simulations. However, it should be appreciated that 
the experimental results (shadowgraphs and velocities), unlike their computational 
counterparts, represent a compilation from a series of runs for each bubble case. Only 
a single spark shadowgraph could be taken from each run, and so the complete record 
was formed by repeating the experiment with different delay times to the exposure of 
the shadowgraph image. While this method produced excellent images, the accuracy 
of the velocity measurements necessarily suffered : since each measurement is derived 
from a sequence of images it is sensitive to the repeatability of the experiment. The 
general uncertainty in the velocity measurements is thought to be 11%, with the 
exception of a few instances for which it is thought to be as large as 30% (Haas & 
Sturtevant 1987). 

A schematic of our computational set-up is shown in figure 6. We have assumed 
that the flow field is symmetric about the axis of the shock tube and so only the 
top half of the flow field (ABCD) was computed. The following boundary conditions 
were applied to the flow domain: sides BC and DA were treated as solid walls using 
a standard reflecting boundary procedure (Quirk 1991); the inflow along side CD 
was specified using the exact flow conditions behind the incident shock wave; zeroth- 
order extrapolation was used along the side AB. In practice neither the upstream nor 
the downstream boundary treatment is critical since no physical waves reach these 
boundaries. Of more relevance are the so-called ‘start-up’ errors which are generated 
when a shock smears to its natural profile given an exact discontinuity as starting 
conditions (Hillier 1991). It is for this reason that the incident shock was placed some 
distance to the right of the bubble so that these errors, which manifest themselves 
as a pair of low-frequency waves moving on the passive characteristics (Quirk 1991), 
would not have a chance to interfere with the shockbbubble interaction process. 

All gas components were modelled as perfect gases; the appropriate values for 
the ratio of specific heats 7 ,  the gas constant R, and the constant-volume specific 
heat capacity CI/, used for the simulations are given in table 1. The initial flow 
field was determined from standard shock relations given the strength of the incident 
shock wave ( M s  = 1.22), taking the density and pressure of the quiescent flow 
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Gas Component y 
air 1.4 0.287 0.72 
R22 1.249 0.091 0.365 
He 1.67 2.08 3.11 
He+28% air 1.648 1.578 2.44 

R (kJ kg-' K-') CV (kJ kg-' K-') 

TABLE 1. Gas properties used in the simulations. 

ahead of the shock to be unity. The bubble was assumed to be in both thermal 
and mechanical equilibrium with the surrounding air, therefore its initial density was 
simply %ir/Rbubb[e .  For the helium bubble case, it was assumed that the contamination 
of helium with air was 28% by mass as indicated by Haas & Sturtevant (1987). As 
can be seen from table 1, this modifies the gas properties substantially. Given the 
experiences of Henderson et al. (1991), no attempt was made to model the effects 
of the membrane needed in the experiment to separate the two gas components. 
Therefore, ahead of the shock, each mesh cell was simply initialized with one of two 
states depending on whether its centre lay inside or outside the bubble. 

The computational domain was discretized using 20 coarse mesh patches each of 
which formed a square of 50 by 50 cells. Additionally, two levels of refinement were 
used, both with a refinement factor of 4, to resolve flow details. Thus the effective 
grid resolution is equivalent to a uniform mesh of 16000 by 800 cells with a spatial 
resolution of 0.056 mm. Both simulations were run as parallel computations on a 
small cluster of workstations (8 Sun SparclO Model 51s) and took two evenings each 
to complete. In this paper, we make no claims as to the computational efficiency 
of our numerical method, but it is sobering to consider that for the R22 bubble 
computation the equivalent uniform mesh calculation would require 3.26 x 10" cell 
updates (16 x 1592 iterations on a mesh 16000 by 800 cells). For our flow solver, 
a single processor of a CRAY Y-MP might manage one cell update every 10 ps in 
which case it would need 905 hours to run the simulation. Brute force computations 
on supercomputers do not represent a sensible option for investigations of shock 
wave phenomena. 

5. Results and discussion: flow visualization 
In this section we present a number of flow visualization images which reveal 

certain subtleties of the shock-bubble interactions which were not apparent from 
either the experiment or previous numerical studies. 

5.1. R22 bubbte - convergent case 
Figure 7 shows a sequence of schlieren-type images from the simulation of the R22 
bubble case; for comparison, the corresponding sequence of experimental images is 
also shown. Pleasingly, the simulation clearly reproduces all the salient features of 
the interaction. To bring out the quality of the simulation, and to show how it 
complements the experiment, we shall now describe this interaction in some detail. 
But first, to interpret correctly the images which follow, recall that the incident shock 
is moving from right to left and note that the original position of the bubble is 
marked by a light circle in the numerical images and by what looks like a dark circle 
with a T-shaped support in the experimental images. 

Frame ( a )  of figure 7 shows a view of the R22 bubble some 55 ps after it is first hit 
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by the incident shock wave, from which it can be seen that the bubble has already 
undergone a slight deformation. What remains of the incident shock appears as two 
short vertical line segments near the top and bottom of the bubble. These segments 
are joined by a curved refracted shock which runs inside the bubble and a curved 
reflected shock which lies outside the bubble. A one-dimensional analysis for the 
precise moment the incident shock hits the bubble suggests that the reflected shock is 
6.4 times weaker than the refracted shock. An appreciation of the relative strengths 
of these two waves can be gained from surface plots for the density and pressure 
fields (see figure 8 a ) ;  the reflected wave is so weak it is hardly discernible. Here the 
refracted shock lags behind the incident shock because the sound speed inside the 
bubble is lower than that outside the bubble. Haas & Sturtevant (1987) observed 
that the refracted shock is slightly thickened at its two endpoints, but no explanation 
was given as to why this was so. From the surface plots it is clear that the refracted 
shock is slightly weaker at its endpoints, both the pressure and density surfaces 
appear slightly chamfered. Thus the thickening is indicative of a compression system 
that matches the pressure jumps between the weak and strong parts of the refracted 
shock. 

As time moves on, the difference in sound speeds between the bubble and the 
surrounding air becomes more apparent, and by 115 ps (figure 76) the refracted 
shock has folded such that two side limbs now run roughly normal to its central 
portion. The surface plots of the density and pressure fields for this time instant 
(figure 8h)  reveal that each side limb varies markedly in its strength. In essence, for 
the flow inside the bubble, the air- R22 interface forms a concave ramp. Thus a series 
of compression waves is required to turn the How through almost ninety degrees: 
each side limb is nearly horizontal and so the induced flow is vertical, but the induced 
flow behind the central portion of the refracted shock is largely horizontal. Observe 
that the two segments of the incident shock have started to diffract around the 
downstream half of the bubble, and that the bubble interface shows signs of incipient 
roll-ups where vorticity has been generated by the passage of the incident shock wave. 
Since the present flow model is inviscid, the development of these roll-ups will be 
controlled by vestigial numerical diffusion and so will depend upon the resolution of 
the computational grid, i.e. strictly speaking they are numerical artifacts. Nevertheless 
such roll-ups are qualitatively realistic, and as discussed in $2 it is doubtful whether a 
viscous flow model would improve matters since a prohibitively fine mesh would be 
required to resolve the appropriate scales accurately. 

By 135 ps the system of compression waves which turns the flow around each of 
the two bends in the refracted shock has steepened and is clearly visible in the surface 
plots for the density and pressure fields (figure 8c). Thus the refracted wave does 
not extend beyond its junction with the side limbs as was suggested by Lohner et al. 
(1988). Whilst the thickening of the refracted wave shows up much more starkly in the 
experimental shadowgraphs than it does in the numerical schlieren images, it should 
be remembered that an experimental shadowgraph represents an integration of the 
curvature of the density field across the entire width of the shock-tube facility used 
to perform the experiment. Consequently, any small three-dimensionality in the flow 
field will subtly alter the recorded image in ways that are not always easy to fathom. 
Here we believe the exaggerated thickening is an experimental artifact, because, 
referring to figure 7 ( c ) ,  within the upper of the two thickened limbs that appear in 
the experimental image i t  is just possible to make out a line which matches the front 
shown by the numerical image. However, as noted by one of the referees, the precise 
cause of the artifact might also lie with an optical distortion in the shadowgraph 
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FIGURE 7(u-e). For caption see facing page. 

system, or with the fact that caustics formed owing to the large deflection of light by 
the gradients in refractive index. 

Other artifacts of the experiment are much more obvious and do not cause undue 
confusion. For example, it is clear from figure 7(c) that the bubble’s support structure 
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FIGURE 7. Numerical schlieren images and experimental shadowgraphs (Haas & Sturtevant 1987) 
from the interaction of an M s  = 1.22 shock wave moving from right to left over an R22 cylindrical 
bubble. Times: ( a )  55 ps, ( b )  115 ps. ( c )  135 ps, ( d )  187 ps, ( e )  247 ps, (f)  318 ps, ( 8 )  342 ps, 
( h )  417 ps, (i) 1020 ps. Experimental images @Cambridge University Press 1987. Reprinted with 
permission of Cambridge University Press. 

gave rise to a number of spurious waves, as did the walls of the shock tube, but we 
model reflections from the tube’s walls and so these particular waves also appear in 
the numerical images. Looking beyond the present study, it would be interesting to 
perform a series of simulations to determine the influence such blockage effects have 
on the dynamics of the interaction process. 

Figure 7 ( d )  shows that by 187 ps the refracted shock has been focused down to 
almost a point. The increase in peak pressure caused by this focusing is seen in the 
corresponding surface plots (figure 8 4 ;  at this time, the peak pressure is 2.1 times 
larger than the expected pressure behind an M s  = 1.22 shock wave. Outside the 
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FIGURE 8(a-c). For caption see facing page 

bubble, the top and bottom segments of the incident shock wave have now crossed, 
following their diffraction around the downstream half of the bubble, and two weak 
contact discontinuities are now visible. These contacts separate regions of fluid that 
have been induced into motion by either the diffracted part or the undisturbed part 
of the incident shock wave. The reflected shocks from the top and bottom walls of 
the shock tube have now started to pass through the bubble. Again these shocks lag 
behind their counterparts outside the bubble because of the difference in the sound 
speeds between the light and heavy fluids. The roll-ups along the bubble interface have 
become much more pronounced and are very prominent in the surface plot for the 
pressure field where they appear as tiny scallops (figure 8 4 .  Interestingly the passage 
of the top and bottom reflected shocks through the corrugated bubble interface has 
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FwmF 8. Surface plots of the density and pressure fields for the interaction of an M s  = 1.22 shock 
wave with an R22 cylindrical bubble. Times: (u)  55 ps, ( h )  115 ps, ( c )  135 ps, (d) 187 ps, ( e )  247 ps, 
( g )  342 ps .  

given rise to a number of cylindrical acoustic waves which then recombine to form a 
shock in a manner reminiscent of Huygen’s front reconstruction. 

Once the refracted shock has been focused it emerges from the downstream interface 
to become a transmitted wave which is cylindrical (figure 7 4 .  The downstream 
interface of the bubble necessarily aligns itself with the resultant velocity field which 
is almost radial and so it takes on a wedge-like shape. Additionally the cylindrical 
transmitted wave is at the stage of catching up the two diffracted segments of the 
incident shock front. Although the agreement between experiment and computation is 
poor at this time, it is worth remembering that each shadowgraph was produced from a 
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separate experimental run. Therefore, the fact that we are generally able to match our 
numerical schlierens so closely to the shadowgraphs is testimony to the repeatability 
of the experiment. In this one instance, it would appear that the experimental run was 
relatively poor and that the gross features of the computation are correctly positioned. 

If there is any criticism of the simulation, it should be directed at a few subtle 
shortcomings on the small scale. For example, the two-pronged feature emanating 
from the left-hand side of the bubble (figure 7e onwards), seems unduly exaggerated 
in our simulation. This feature is caused by a narrow jet of fluid which is shot forward 
during the focusing of the refracted wave. As yet, we cannot categorically state the 
cause of this exaggeration. It is probably due to the lack of real viscosity in the flow 
model. In the experiment viscosity causes the jet to spread thus reducing its range of 
influence. In the simulation, which is inviscid, any spreading of the jet is simply down 
to residual numerical diffusion. Given the resolution of the present computation, this 
residual diffusion is very small and so the spreading of the jet will be underdone giving 
it an exaggerated range of influence. However, it is conceivable that the exaggeration 
is yet another obscure numerical failing of the type catalogued by Quirk (1994). 

By 342 ps the bubble has moved appreciably from its original position and it 
has started to elongate (figure 7g). Inside the bubble there is a backward moving 
shock which was born from the internal reflection of the refracted shock from the 
downstream interface. In the numerical image a number of weaker waves are also 
apparent, caused by waves which pass through the bubble because of reflections from 
the walls of the shock tube and which subsequently lead to other internal reflections 
from the bubble interface. Outside the bubble, the transmitted wave has reflected 
from the walls of the shock tube, and as can be seen from the surface plots for 
this time (figure 8g) ,  spikes in the pressure and density fields still persist where the 
transmitted wave intersects the bubble interface. The apparent feathering of the 
transmitted shock is due to its passage over what is now a corrugated surface given 
the many roll-ups along the bubble interface. 

The internally back-reflected shock wave eventually emerges from the upstream 
interface to become a backscattered wave (figure 7h),  while the waves resulting from 
the reflection of the transmitted shock from the top and bottom walls of the shock 
tube in their turn start to pass through the bubble, further promoting the generation 
of vorticity along the interface. The bubble continues to elongate and by much later 
times it evolves into a large vortex pair (figure 7i). For these late times, when viscous 
effects might be expected to dominate proceedings, it is remarkable that an inviscid 
simulation gives such qualitatively good agreement with experiment. 

5.2. Helium bubble - divergent case 
Figure 9 shows a sequence of schlieren-type images from the simulation of the helium 
bubble case; again the simulation reproduces all the features of the interaction process. 

Figure 9(a) shows a view of the helium bubble 32 ps after it is first hit by the 
incident shock wave. As before, there is a curved refracted shock which lies inside the 
bubble; however, since the helium has a higher sound speed than the surrounding air 
(uair/aHe = 0.35), the refracted shock now moves ahead of the incident shock. Outside 
the bubble, the curved reflected wave is neither a simple shock nor a simple expansion 
wave. A one-dimensional Riemann problem analysis suggests that the reflected wave 
should be a weak expansion (the density jump across this wave is 19% of the density 
jump between the undisturbed bubble and the surrounding air). Indeed, the surface 
plots for the pressure and density field confirm that this expectation is true near the 
axis of flow symmetry (figure 10a). However, away from this axis there is very little 
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deformation of the bubble and the point of reflection acts as a solid surface giving rise 
to a reflected shock. Behind this shock there is an expansion system which accounts 
for the lower pressure to be found behind the rest of the reflected wave due to the 
collapse of the bubble. 

The difference in sound speeds between the bubble and the surrounding air becomes 
more apparent by 52 ps (figure 9b) where the refracted shock has run well ahead 
of the incident wave. A four-shock configuration has formed which Henderson et 
al. (1991) have termed twin regular reflection-refraction (TRR). A schematic for 
this shock configuration is shown in figure 11. Given the relative positions of the 
four shocks no discernible contact discontinuity emanates from their intersection 
point as would be expected in the general case, although one does become visible 
by 72 ps (figure 9 4 .  Around 62 ps (figure 9c) the refracted wave emerges from 
the left-hand side of the bubble to become the transmitted wave and the resultant 
internally reflected wave appears as two cusps. As can be seen from figure 9(d), this 
reflected wave is convergent and is being focused along the axis of the bubble but 
the local increase in pressure is quite small (figure 10d). By 82 ps  (figure 9e) the 
internally reflected waves have crossed and are now diverging; here they appear as 
a small loop. The two branches of the transmitted shock have also now crossed. At 
102 ps (figure 9 f ) ,  along the axis of flow symmetry the side shock and the transmitted 
shock have almost merged. Meanwhile, both the original reflected wave and the 
transmitted shock have reflected from the walls of the shock tube, and as can be 
seen from figure l O ( f )  such spurious reflections can lead to large increases in local 
pressure. Here the foot of the incident shock, where it meets the shock tube's walls, 
is reinforced substantially. This spike then proceeds to move away from the wall 
and eventually interacts with the bubble. At this time, what remains of the incident 
shock has just started to diffract around the downstream side of the bubble, and 
the internally reflected wave has emerged from the upstream interface as a weak 
backscattered wave. This has resulted in a very weak internally reflected wave, so 
weak in fact that it does not appear in the experimental images. As time moves on, 
the bubble becomes kidney shaped and spreads laterally in the process (figure log). 
This change in shape is driven by vorticity generated at the edge of the bubble due to 
the passage of the shock which induces a jet of air along the axis of flow symmetry. 
When this jet impinges on the air at the downstream edge of the bubble, which is 
less easily displaced than the lighter helium, it spreads laterally and the bubble forms 
a pair of distinct vortical structures (figure 1Oi). 

6. Results and discussion: velocities 
The results from the previous section clearly indicate that the present simulations 

are qualitatively correct; however, any serious numerical investigation should contain 
some form of validation exercise. Here, this included a quantitative check on the 
velocities of several prominent flow features. For each simulation, the positions of 
certain features were digitized from a sequence of schlieren-type images. Using these 
measurements, x, t diagrams were then constructed to find the velocities. Whereas the 
experimentally measured velocities had an estimated uncertainty of 11%, here the 
uncertainty is much smaller. A shock might be smeared over 3 mesh cells, therefore 
given the resolution of the computational grid its location can be determined to 
within f0.17 mm. This equates to an uncertainty of less that 1% in the worst-case 
velocity measurement. The uncertainty in velocity due to conservation errors is also 
small at less than 3%. 
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FIGURE 9(a-e). For caption see facing page. 

6.1. R22 bubble - convergent case 
The x,t  diagram for the R22 bubble case is shown in figure 12, together with a 
schematic which identifies the various flow features that have been digitized. A com- 
parison of the computed velocities with their experimentally measured counterparts 
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FiGuRt: 9. Numerical schlieren images and experimental shadowgraphs (Haas & Sturtevant 1987) 
from the interaction of an M s  = 1.22 shock wave moving from right to left over a helium cylindrical 
bubble. Times: ( a )  32 ps, ( h )  52 ps, (c )  62 ps, (d) 72 ps, ( e )  82 ps.(f) LO2 ps, ( g )  245 ps, ( h )  427 ps, 
( i )  674 ps. Experimental images @Cambridge University Press 1987. Reprinted with permission of 
Cambridge University Press. 

(Haas & Sturtevant 1987) is given in table 2. The agreement between the two sets of 
results lies well within the given 11% experimental error; the worst case (V,) is just 
5.8%. Moreover the discrepancy is mitigated by the fact that the wave fronts do not 
move with constant velocity. Figure 12 contains slight accelerations and decelerations 
which are swamped by the scatter in the corresponding experimental x, t diagram. 
For example, the refracted wave starts off with a velocity of 242 m s-' but accelerates 
to 265 m s-' by r = 160 ps, giving an average of 254 m s-I. Similarly, the upstream 
interface of the bubble decelerates from 84 m s-' to 61 m s-' over the same period, 
giving an average of 74 m s-I (see figure 17a). 

Overall, the general agreement between the two sets of velocities confirms the 
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FIGURE 10(a-c). For caption see facing page. 

experimentalists’ view that the contamination of R22 by air was so small (they 
estimated it at 3.4% by mass) as to be negligible. Note that we have chosen to 
ignore the large discrepancy for Vdi since the experimental value appears to have 
been tabulated incorrectly; the experimental x, t diagram indicates that Vdi is close to 
130 m s-l which is in fair agreement with the computation. 

6.2. Helium bubble - divergent case 
The x, t diagram for the shock interaction with the helium bubble is shown in figure 13, 
and a comparison with experiment is made in table 3. As with the R22 case, the 
two sets of results are in close agreement. However, the effects of air contamination 
are now significant. As detailed in $4, we have assumed that the contamination of 
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FIGURI, 10. Surface plots of the density and pressure fields for the interaction of an Ms = 1.22 
shock wave with an He cylindrical bubble. Times: ( u )  32 ps, ( h )  52 ps, (c) 62 ps, ( d )  72 ps, (f') 
102 ps, (g) 245 ps. 

helium by air is 28% by mass. If no account is taken of contamination, the velocity 
results are very different even though the flow remains qualitatively similar. For 
example, the velocity VR with 28% contamination is 943 m s-'; alternatively, with 
zero contamination it is found to be 1073 m s-'; an increase of 13.5%. The correction 
for contamination necessarily assumes that the air and helium are homogeneously 
mixed. Since this would not have been the case in the experiment, our correction can 
only be viewed as accounting for the gross affects of contamination. 
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FIGURE 11. Schematic for twin regular reflection-refraction (TRR). 

Velocity vs VR VT vu! Vuf vd, vdf 
Computation 420 254 560 74 90 116 82 
Experiment 415 240 540 73 90 78 78 
"h Discrepancy $1.2 +5.8 +3.7 f1.4 fO.0 N/A f5.1 

TABLE 2. A comparison of the computed velocities for the R22 cylinder case with those measured 
experimentally by Haas & Sturtevant (1987); for notation, see figure 12. 

Velocity v~ V R  V T  Vu vd!  v, 
Computation 422 943 377 178 146 227 
Experiment 410 900 393 170 145 230 
% Discrepancy +2.9 +4.8 -4.1 +4.7 $0.7 -1.3 

T A B L ~  3. A comparison of the computed velocities for the He cylinder case with those measured 
experimentally by Haas & Sturtevant (1987); for notation, see figure 13. 

7. Results and discussion: pressure traces 
In addition to producing shadowgraphs, Haas & Sturtevant recorded pressure 

histories at several stations along the axis of flow symmetry to build up a more 
complete picture of the shock-bubble interaction process. For example, in the 
heavy bubble case, they noted that the diffracted wave generated a smooth pressure 
disturbance at a measuring station 3 mm downstream of the initial bubble position, 
and not a discontinuous disturbance as might be expected from a shock wave. In 
fact, as was shown in $5, the diffracted front barely constitutes a shock wave in the 
vicinity of the bubble interface: the surface plots in figure 8 reveal that along the 
interface the pressure field ramps up gradually behind the diffracted wave and is not 
discontinuous, hence the smooth nature of the measured disturbance. 

Although the experimental pressure traces only provide a local view of events and 
so are not as informative as the present pressure surfaces, it was hoped that they could 
be used to provide further quantitative evidence as to the accuracy of the simulations. 
Unfortunately, the traces cannot be relied upon to provide an accurate benchmark 
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since the measuring process was invasive. A pressure transducer was mounted on a 
movable endwall placed within the shock tube (Haas & Sturtevant 1987), thus the 
transducer actually measured the pressure disturbances lor waves reflecting off the 
endwall and not the local pressure as desired. Consequently, the transducer would 
be expected to produce readings on the high side. This agrees with our findings. For 
example, the experiment gave the peak pressure in the heavy bubble case as 7.7 bar, 
but the simulation suggests that i t  is close to 5.1 bar. Also. the experiment indicated 
that the long-time pressure, once all the disturbances have died away, this pressure 
should be close to the pressure behind a M y  = 1.22 shock wave which is only 1.56 
bar (the simulation gave the long-time pressure to be 1.6 bar). Here, the numerics 
provide a quantitative assessment of the errors introduced by the practicalities of the 
experimental sct-up. Thus it seems the invasive pressure readings were 37-51 o/o too 
high. 

Although we cannot make a useful comparison with experiment, for completeness 
we present the numerical pressure traces from the heavy bubble case, see figure 14 
(cf. figure 16 of  Haas & Sturtevant 1987). 

8. Results and discussion: vorticity generation 
Although it  takes us beyond the main purpose of this paper, we can use our 

numerical results to make some observations which are pertinent to several recent 
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studies on shock-induced mixing : the present two-dimensional unsteady flow is 
analogous to a three-dimensional steady flow that has been proposed as a mechanism 
to enhance mixing of air and fuel in supersonic combustions systems (Marble et al. 
1987; Drummond & Givi 1994). Essentially, vorticity which is impulsively generated 
by the passage of the shock through the bubble drives a mixing process reminiscent of 
the Richtmyer-Meshkov instability (Richtmyer 1960; Meshkov 1970; Rupert 1992). 

Recall that the vorticity evolution equation, which is derived from the curl of the 
momentum equation, contains the baroclinic torque term 

This term may be recast so as to write the vorticity equation in the form 

1 __ ...  + -vp x vp, - - Dm 
Dt P2 

from which it can be seen that vorticity is produced whenever there is a misalignment 
in the gradients of the density and pressure fields (Shercliff 1977). In the case of a 
shock-bubble interaction, such a misalignment occurs because the propagating shock 
wave imposes a local pressure gradient which is largely independent of the local 
density gradient imposed by the bubble inhomogeneity. 

Several authors have devised approximate analytic expressions to predict the cir- 
culation produced by an isolated shock-bubble interaction so as to have a means of 
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FIGLIRF 14. Pressure histories at several stations downstream of the R22 cylinder. 

gauging the effectiveness of the associated late-time mixing. Typically, this is done by 
making enough simplifying assumptions that the baroclinic torque can be integrated 
over the bubble for the duration of the interaction (e.g. Picone & Boris 1988 and 
Yang et al. 1994), although Samtaney & Zabusky (1994) adopt a more sophisti- 
cated approach and compute vorticity directly from the local velocity field found by 
shock-polar analysis. Various claims are made for these models (which are henceforth 
referred to as PB, YKZ and SZ respectively) based on their respective abilities to 
provide circulation predictions close to those found by numerical simulations. For 
example, although mathematically approximate, the YKZ model is claimed to retain 
the essential features of the interaction process, since across a range of cases its 
discrepancy with simulation is less than 15%. However, our simulations indicate that 
this and other claims made for these models are debatable. 

Consider the present helium bubble case. Both the PB and YKZ models assume 
that the pressure gradient responsible for the baroclinic torque remains constant and 
acts horizontally throughout the interaction, and that vorticity production continues 
for the time it takes the incident shock to traverse the bubble. But a plot of circulation 
as a function of time (figure 15b) reveals that the circulation bottoms out around 
t = 60 ps which is just short of the time when the refracted wave emerges from 
the bubble (see figure 9c). Thus both models overestimate the duration of vorticity 
production by more than a Factor of 2, since VR/ V, = 2.23. Somewhat fortuitously this 
gross error appears to be compensated by other errors in the assumptions. Firstly, 
the relevant pressure gradient does not remain constant but significantly weakens 
during the interaction (see figure lOa,f). Secondly, it is clear that near the bubble 
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FIGURE 15. Circulation as a function of time: ( a )  R22 bubble case; ( h )  He bubble case. 

FIGURE 16. Surface plots of the magnitude of the vorticity field for the interaction of an M ,  = 1.22 
shock wave with an He cylindrical bubble. Times: ( a )  32 ps, ( e )  102 ps. 

surface there are large deviations in the pressure gradient from the horizontal (see 
figure lob, c). 

Surface plots for the vorticity field and the baroclinic torque term indicate that 
vorticity production is effectively restricted to just two sites and that the amount 
produced by plain shock curvature is negligible (see figure 16). The bulk of the 
vorticity is produced where the side shocks interact with the bubble interface, point 
a on figure 11, hence the reason why the circulation bottoms out once the refracted 
shock emerges from the bubble. The other site is where the Mach stem crosses the 
bubble interface, point b on figure 11. But this site is only active during the windward 
part of the interaction. Both sites of vorticity production are extremely localized and 
cover only three or four mesh cells, i.e. a region just 0.2 mm in diameter. Because of 
this, they show up poorly on a graphic and no worthwhile plots can be presented. 
Interestingly, Picone & Boris (1988) did note that the production of vorticity along 
the bubble interface appeared to track the fastest moving shock wave, i.e. the side 
shock. However, the low resolution of their computations did not allow them to 
conclude this with any certainty and the error for the duration of vorticity production 
in the PB circulation model went unnoticed. 

In the R22 bubble case it becomes even clearer that the pressure gradient which 
produces baroclinic torque does not remain horizontal. In fact, it generally acts in 
a direction tangential to the bubble interface, see figure 8(b-d). This observation is 
built into the SZ model and leads it to predict to first order that n/2 more circulation 
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FIGURE 17. (a) Velocity distribution along the R22 bubble axis at times: (i) 33 ps, (ii) 68 ps, (iii) 101 
ps, (iv) 133 ps, (v) 165 ps. ( b )  Velocity distribution along the He bubble axis at times: (i) 16 ps, (ii) 
28 ps, (iii) 40 ps, (iv) 52 ps. 

is produced over the leeward part of the interaction than over the windward part. 
This prediction, however, ignores the weakening of the incident shock jump, as it 
diffracts around the bubble (see figure ~ u - c ) ,  which reduces its ability to produce 
vorticity. Our simulations indicate that the circulation actually increases uniformly 
up to t = 180 ps (see figure 15a) which is around the time when the refracted wave 
is focused to a point (see figure 7 4 .  Now for this to happen, vorticity production 
over the leeward side of the bubble cannot be confined to a single point, and plots of 
the baroclinic torque term confirm that vorticity is generated along the interface over 
the extent of the washed out pressure gradient (again these plots are not presented, 
since the region of baroclinic activity merely forms an arc of the interface, one or two 
mesh cells thick, that runs backwards from where the shock intersects the bubble). 
Therefore models which only consider the shock front dynamics cannot be expected 
to produce reliable predictions for this phase of the vorticity deposition. Besides, the 
SZ model, which is based on an expansion for the exact vorticity production under 
the assumption of regular reflection, is probably too far outside its range of validity 
to provide an accurate prediction for this phase of the interaction. 

In light of the present simulations we would argue that the accuracy of the PB, 
YKZ and SZ models rests with the insensitivity of circulation to the precise details 
of the vorticity deposition. Note that at any instant during the interaction, the 
circulation could be computed directly by performing the velocity contour integral 

for the path ABCD shown in figure 6. Therefore provided no spurious reflections have 
taken place, there will be no contribution to the integral from the sides AB and CD, 
while that along BC simply comes from the constant velocity state behind the incident 
shock and so grows linearly with time. In fact, the only interesting contribution 
comes from a segment A’D’ which lies between the reflected and refracted shocks 
along the axis AD. Figure 17 shows snapshots of the velocity distribution along 
this segment during various stages of the two interactions studied here. Given the 
intricacies of the flows, it is somewhat surprising that the average velocity along the 
segment A’D’ remains almost constant in time (the average in the He bubble case is 
151.6 m s-’ 1.4% and that in the R22 case is 86.5 m s-’ & 2.8%), thereby revealing 
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why the circulation increases uniformly with time in both interactions, at least up to 
the point where secondary effects come in to play. 

9. Conclusions 
Detailed numerical simulations have been performed in an attempt to shed new 

light on the complex phenomenological behaviour of shock waves interacting with 
gas inhomogeneities. The conditions of the simulations were chosen to match the 
experiments of Haas & Sturtevant (1987): a weak shock wave in air ( M s  = 1.22) 
interacts with an isolated cylindrical bubble of either Refrigerant 22 or helium. In both 
cases the simulations reproduce the principal features observed in the experiments 
and even go so far as to expose certain features which were barely visible in the 
experimental shadowgraphs. The extent of the agreement lends credibility to several 
observations that are made using information gleaned from the simulations for which 
there is no experimental counterpart. 

In particular, since the simulations provide full information for wave strengths 
and not just wave geometries, the precise nature of the refracted shock within the 
bubble inhomogeneities has been revealed for the first time. In the R22 bubble case 
it is shown that there are large variations in wave strength along the length of the 
refracted front; the two side limbs are very much weaker than the central portion, 
being little more than weak compressive systems that are not discontinuous but have 
a finite width. This behaviour accounts for the ‘shock thickening’ observed in the 
experiment, although optical distortions in the shadowgraph system appear to have 
exaggerated the effect. 

Additionally, since computations do not suffer from repeatability problems and 
allow measurements that are non-intrusive, the simulations have allowed two weak- 
nesses of the experiments to be quantified: the intrusive technique used to measure 
pressure gave readings that were between 37 and 51% too high; experimental scatter 
masked accelerations and decelerations of the flow features, e.g. the velocity for 
the upstream interface of the R22 bubble was measured as 73 m s-l, missing a 
deceleration from 84 m s-l to 61 m s-’. 

The present results also provide new insight into the process whereby baroclinic 
torque generates vorticity. In the helium bubble case it is found that it is the side 
shocks, where they cross the bubble interface, that are responsible for generating 
vorticity. Thus production effectively ceases once the refracted wave emerges from 
the bubble, even though the incident wave has traversed only half of the bubble by 
the time this happens. On the other hand, in the R22 bubble case it is found that 
vorticity production is not confined to a point over the leeward half of the interaction, 
because there is a continuous pressure gradient at the bubble interface, rather than 
a shock jump, owing to the diffraction of the incident wave. These observations 
undermine assumptions upon which current circulation prediction models are based, 
and would seem to suggest that it is insufficient to consider just the front dynamics 
when devising such models. 

We point out, however, that at any instant during a shock-bubble interaction the 
only non-trivial contribution to the circulation rests with the velocity distribution 
along the bubble axis between the reflected and refracted waves. For the cases studied 
here, although this velocity distribution is both highly non-uniform and unsteady, it 
provides an averaged velocity that hardly varies over the course of the interaction 
(86.5 m s-l & 2.8% in the R22 bubble case, and 151.6 m s-l +_ 1.4% in the helium 
bubble case). Consequently circulation grows linearly with time and is independent 
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of the details of the flow. Moreover, these averaged velocities are within 3% of the 
interface velocity found by solving the appropriate one-dimensional Riemann problem 
for the instant the shock strikes the bubble, and this explains why under-resolved 
computations which completely miss the dynamics of the interaction still provide 
reasonable predictions for circulation. Similarly, we believe that the apparent success 
of current circulation prediction models rests on this insensitivity of the bubble-axis 
velocity to the precise details of the interaction. 
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